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ABSTRACT

This article gives an informal overview of the geometric com-
plexity theory (GCT) program towards the P vs. NP and
related problems.
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1. INTRODUCTION

Geometric complexity theory (GCT) is an approach via
algebraic geometry and representation theory towards the
P vs. NP and related problems [9, 13, 15, 29]. It was
proposed in a series of papers [18, 21, 25, 26, 24, 4, 22, 19,
20] and was developed further in [7, 8, 14]. This article gives
an informal overview of GCT. It is meant to be an update
on the status of the P vs. NP problem as reported in [11].
See [23] for a more detailed and formal overview of GCT.

Let us begin by recalling an algebraic variant of the P
vs. NP problem introduced in the seminal paper [29]. It
can formulated in a very concrete form as the permanent
vs. determinant problem. Here the permanent of an n x n
variable matrix X is defined just like the determinant but
without signs. Specifically:

det(X) = Zo— Sign(a) ngiSn Lio () and’
perm(X) = >, H1§i§n Lio (i)

where z;;’s denote the entries of X and o ranges over all
permutations of the integers from 1 to n. Let K, the base
field or ring of computation, be either Z, Q, C, or a finite
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field F,, of p elements, p an odd prime. We say that perm(X)
can be linearly represented as the determinant of an m x m
matrix if perm(X) = det(Y") for some m X m matrix Y whose
entries are linear combinations (possibly nonhomogeneous)
over K of the variable entries of X. The permanent vs.
determinant conjecture in [29] is that perm(X) cannot be
linearly represented as the determinant of an m X m matrix
when m is small. This means when m is polynomial in n,
or more generally, when it is 0(21°ga") for some constant
a > 0.

It is known [3, 29] that this conjecture, when K is Z or Fp,
and m is polynomial in n, is implied by a stronger (nonuni-
form) version® of the P # NP conjecture or even the weaker
#P ¢ NC conjecture. Here #P denotes the class of func-
tions, like the number of satisfying assignments of a boolean
formula, that count the number of solutions of the problems
in NP, and NC denotes the class of functions?, like the
determinant, that can be computed efficiently in parallel in
polylogarithmic time using polynomially many processors.
The implication of the permanent vs. determinant conjec-
ture from the (nonuniform) #P vs. NC' conjecture is based
on the fact that the permanent is # P-complete [29] (in the
spirit of the well-known N P-completeness) and that the de-
terminant is (almost) NC-complete. It is also known that
the permanent vs. determinant conjecture, when K is a

large enough finite field F, and m = O(2C1°g2") for some
large enough constant ¢ > 0, implies the #P € NC conjec-
ture. As such the permanent vs. determinant conjecture is,
strictly speaking, an algebraic analogue of the #P vs. NC
conjecture, not the P vs. NP conjecture. There is also an
analogous algebraic analogue of the P vs. NP conjecture
(cf. [21, 25]) which, when K is a large enough finite field,
implies the usual P # NP conjecture. But its story is sim-
ilar to that of the permanent vs. determinant conjecture.
Hence, for simplicity, we only focus on the permanent vs.
determinant conjecture here.

By the arithmetic case of this conjecture, we mean the
case when K = 7Z,Q, or C. This case for K = Z is implied
by the case when K = F},, and also, as already mentioned,
by the (nonuniform) #P vs. NC conjecture. The arithmetic
case is easier than the case when K = F}, because it avoids
complications in algebra that arise in the case of finite fields.

Hence let us first discuss the arithmetic case when K = C,
which implies the cases when K = Z or Q. The advantage of

!This version says that NP contains functions that cannot
be computed by polynomial size circuits.

2This definition of NC is broader than the usual definition
that allows only 0-1 functions.



dealing with the arithmetic conjecture over C, in contrast to
the original boolean conjectures, is that this arithmetic con-
jecture is a statement about multivariate polynomials over
C. Hence we can use techniques from algebraic geometry,
which is the study of the common zeroes of sets of multivari-
ate polynomials. These techniques work best when the base
field is algebraically closed of characteristic zero, such as C.
Since the permanent and the determinant are characterized
by their symmetries (Section 2), we can also use techniques
from representation theory, which is the study of groups of
symmetries. As such the GCT approach that goes via alge-
braic geometry and representation theory is very natural in
the arithmetic setting.

The articles [25, 26] reduce the arithmetic permanent vs.
determinant conjecture to proving existence of geometric 0b-
structions (Section 2) that are proof certificates of hardness
of the permanent. The very existence of these obstructions
for given n and m implies that the permanent of an n X n
variable matrix cannot be linearly represented as the deter-
minant of an m X m matrix. The geometric obstructions
are objects that live in the world of algebraic geometry and
representation theory. Their dimensions can be large, ex-
ponential in n and m. But they have short classifying la-
bels. The basic strategy of GCT, called the flip [22, 21]
(Section 3), is to construct the classifying label of some ge-
ometric obstruction ezplicitly in time polynomial in n and
m when m is small. It is called the flip because it reduces
the lower bound problem under consideration to the upper
bound problem of constructing a geometric obstruction la-
bel efficiently. The flip basically means proving lower bounds
using upper bounds. Its basic idea in a nutshell is: (1) un-
derstand the the theory of upper bounds (algorithms) first,
and (2) use this theory to prove lower bounds later. But one
may wonder why we are going for explicit construction of
obstructions, when proving existence of an obstruction even
nonconstructively suffices in principle. This is because of
the flip theorem in [23, 21] which says that in the problem
under consideration we are essentially forced to construct
some proof certificate of hardness explicitly.

The upper bound problems that arise in the context of
the flip turn out to be formidable problems at the frontier
of algebraic geometry. The flip theorem mentioned above
also says that stronger versions of the permanent vs. de-
terminant conjecture and a standard derandomization con-
jecture [12] in complexity theory imply together solutions
to the upper bound problems in algebraic geometry that
are akin to the ones that arise in the flip. Furthermore the
article [22] gives evidence that even the upper bound prob-
lems that arise in the flip may be essentially implications of
these conjectures in complexity theory. This suggests a law
of conservation of difficulty, namely, that problems compa-
rable in difficulty to the ones encountered in GCT would
be encountered in any approach to the (nonuniform) P vs.
NP problem (of which the arithmetic permanent vs. deter-
minant conjecture over Z is an implication). This does not
say that any approach to the P vs. NP problem has to nec-
essarily go via algebraic geometry. But it does suggest that
avoiding algebraic geometry may not be pragmatic since it
would essentially amount to reinventing in some guise the
wheels of this difficult field that have been developed over
centuries.

There is also another reason why the explicit construc-
tion of geometric obstruction labels turns out to be hard.

At the surface it seems that for such efficient construction
one may need to compute the permanent itself efficiently,
thereby contradicting the very hardness of the permanent
that we are trying to prove. By the flip theorem in [23,
21], this self referential difficulty (Section 3.4), akin to that
in Godel’s Incompleteness Theorem, is also not specific to
GCT. Any approach would have to cope with it. The article
[22] shows how it can be tackled in GCT by decomposing
the lower bound problem under consideration into subprob-
lems without this difficulty (Section 3.5). Conceptually, this
is the main result of GCT in the arithmetic setting.

Finally, let us discuss the permanent vs. determinant con-
jecture over finite fields that implies the #P ¢ NC' conjec-
ture, the story for the algebraic variant of the P vs. NP
problem in [25] that implies the usual (boolean) P vs. NP
conjecture being similar. Here the GCT plan is to prove the
arithmetic case via algebraic geometry over C as outlined
above first, and then extend this proof to finite fields by
proving additional results in algebraic geometry over C, or
rather, algebraically closed fields of characteristic zero such
as C. At the surface, this plan may seem counterintuitive.
After all, how one can hope to prove statements about finite
fields using algebraic geometry over C? A basic prototype
for this plan is the analogue of the usual Riemann hypothesis
for finite fields proved in [10] using algebraic geometry over
algebraically closed fields of characteristic zero such as C.
The proof of this result, a crowning achievement in math-
ematics, shows that difficult statements about finite fields
can be proved using algebraic geometry over algebraically
closed fields of characteristic zero. In the same spirit, the
GCT approach in the arithmetic setting can be extended so
that it applies to the usual (boolean) #P vs. NC and P
vs. NP conjectures. But this story is beyond the scope of
this article. It will be described in a later paper [17]. In this
paper we confine ourselves to the arithmetic permanent vs.
determinant problem, which captures the crux of the P vs.
NP problem.

The rest of this article is organized as follows. In Sec-
tion 2 we describe the notion of geometric obstructions for
the arithmetic permanent vs. determinant problem. In Sec-
tion 3, we describe the flip strategy that goes towards explicit
construction of geometric obstruction labels in polynomial
time. We state the upper bound problems in algebraic ge-
ometry that arise in this context. We also describe the self-
referential difficulty in the problem under consideration and
how GCT tackles it by decomposing the problem into sub-
problems without this difficulty. In Section 4, we address
some frequently asked questions.

The subsections marked with & in this article contain
technical material. They may be skipped by the readers
not interested in technical details.

2. GEOMETRIC OBSTRUCTIONS

We now describe the GCT approach to the arithmetic
permanent vs. determinant problem [29] over C based on
the notion of geometric obstructions (proof certificates of
hardness).

The starting point of the approach is the classical result
that the permanent and determinant are completely charac-
terized by their symmetries in the following sense [25].
(D): Let Y be a variable m x m matrix. Then det(Y) is
the unique polynomial (up to a constant multiple) of degree
m in the variable entries of Y such that, for any m x m



invertible complex matrices A and B with det(A) det(B) =
1, det(Y) = det(AY " B), where Y* is Y or its transpose.
(P): Let X be a variable n X n matrix. Then perm(X) is
the unique polynomial (up to a constant multiple) of degree
n in the variable entries of X such that, for any diagonal or
permutation matrices A and B, perm(X) = perm(AX*B),
where X™* is X or its transpose, and the product of the
entries of A is one, when A is diagonal, and similarly for B.

The goal is to solve the problem under consideration ex-
ploiting these properties. Towards this end, [25] constructs
algebraic varieties A[perm,n, m| and A[det, m] such that if
perm(X), where X is an n x n variable matrix, can be lin-
early represented as the determinant of an m X m matrix,
then

Alperm,n,m] C A[det, m]. (1)

Here by an algebraic variety we mean the set of common
solutions of a system of multivariate polynomial equations
over C. These are generalizations of the usual curves and
surfaces. For example, the set of common solutions in C* of
two polynomial equations

(1) : 23 /a® + 23/b* + 23/ + 23 /d*> =0, a,b,c,d > 0, and,
(2) : 23/ + 23 /b + 23 /c? = x4, d', b, >0,

is a two-dimensional variety Z formed by intersecting the
3-dimensional ellipsoid corresponding to the first equation
with the 3-dimensional paraboloid corresponding to the sec-
ond equation. By the coordinate ring of a variety we mean
the space of polynomial functions on it. This is obtained
by restricting to the variety the polynomial functions on the
ambient vector space containing the variety. For example,
the coordinate ring of Z here is the space of polynomial
functions on C* restricted to Z.

The varieties A[det, m] and A[perm, n, m] are formally de-
fined in Section 2.1 below. Intuitively, the points in the
variety Al[det, m| correspond to the functions in the arith-
metic analogue of NC' called VP [29] or the “limits” of such
functions, and the points in Alperm, n, m] correspond to the
functions in the arithmetic analogue of #P called VN P [29]
or the “limits” of such functions. Since the permanent vs.
determinant conjecture is the arithmetic analogue of the # P
vs. NC conjecture, it thus suffices to show that the inclusion
(1) does not hold when m is small.

The goal is to show using algebraic geometry and rep-
resentation theory that the inclusion (1) is impossible, as
conjectured in [25], when m is polynomial in n. We call this
the strong permanent vs. determinant conjecture. It implies
the original conjecture and is almost equivalent to it in the
sense that if (1) holds then perm(X) can be approximated
infinitesimally closely by a linear representation of the form
det(Y"), with dim(Y”) = m. The following is a partial result
towards the above stronger conjecture.

Theorem|14] The inclusion (1) is impossible if m < n?/2.

This implies the earlier quadratic lower bound [16] for the
permanent, but is a bit stronger.

As an aid to prove the strong permanent vs. determinant
conjecture in general, [26] defines the notion of a geometric
obstruction to the inclusion (1). Informally, a geometric ob-
struction is a representation-theoretic object that lives on
Alperm, n,m] but not on A[det, m]; cf. Figure 1. The very
existence of such an obstruction serves as a guarantee that
the inclusion as in (1) is not possible, because otherwise the

Figure 1: A geometric obstruction

obstruction would be living on A[det, m] as well.

To define geometric obstructions precisely, we need to re-
call some basic facts from representation theory. Let G =
G L (C) be the general linear group of k x k complex invert-
ible matrices. We call a vector space W a representation
of G if there is a homomorphism from G to the group of
invertible linear transformations of W. For example, C*
with the usual action of G is its standard representation.
There are, of course, far more complex representations of G.
Their building blocks were classified by Hermann Weyl [30].
He showed that irreducible (polynomial) representations of
G are in one-to-one correspondence with nonnegative inte-
ger sequences (called partitions) A = (A, -+, \;), where
A > A2 > A >0, and | < k. An irreducible representa-
tion of G in correspondence with A is denoted by Vi (G). It is
called a Weyl module of G. For example, the standard repre-
sentation C* of G mentioned above is the Weyl module corre-
sponding to the partition (1) consisting of just one integer 1.
The Weyl module Vi (G), when A = (), is simply the space
Sym"(z1,...,2x) of all homogeneous polynomials of degree
r in the variables z1, ..., zx with the following action of G.
Given a polynomial f(z) = f(z1,...,2k) € Sym"(z1,..., 2k)
and o € G, map f(z) to

f7(2) = f(z0). ()

Each finite dimensional representation of G is like a complex
building that can be decomposed into the building blocks—
the Weyl modules. Fundamental significance of Weyl’s clas-
sification result from the complexity theoretic perspective is
the following. The dimension of each Weyl module Vi (K)
is in general exponential in the bitlength of A\. But it has
a compact (polynomial size) specification, namely, the la-
belling partition A. Existence of such compact specifica-
tions of irreducible representations of G plays a crucial role
in what follows.

If W is a representation of GG, then the elements of G act
on W moving its points around via invertible linear trans-
formations. More generally, a group can similarly act on
a variety too. As a simple example, consider the ellipsoid
FE C R? with the equation z$ 4+ 23 + 23/a = 0, a > 0. Let
U be the unit circle. It becomes an additive group if we
identify each point in U with its polar coordinate € and let
the usual addition of angles play the role of the group com-
position. The group U has a natural action on E: let 6 € U
act on F by rotating F around the z3 axis by the angle 0;
cf. Figure 2. Let R[E] be the coordinate ring of E. This
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Figure 2: An ellipsoid

is the space of polynomial functions on R? restricted to F.
Then this action of U on E also makes R[E] a representa-
tion of U: given 6 € U just map any polynomial function
f(@) = f(z1,22,23) on E to f(0-%), where 0-% € E denotes
the point obtained by rotating z € E around the x3 axis by
the angle 6.

Similarly, the group G = GLxC, with k = m?, acts on the
varieties A[det,m] and A[perm,n,m] moving their points
around (cf. Figure 1) and this action of G on the varieties
makes their coordinate rings (the spaces of polynomial func-
tions on them) representations of G. A formal definition of
the action of G and the representation structures of the co-
ordinate rings of A[det,m] and A[perm,n,m| is given in
Section 2.1 below.

These representation structures turn out [26] to depend
critically on the properties (D) and (P) respectively. Specif-
ically, the properties (D) and (P) put strong restrictions
on which irreducible representations of G can occur as G-
subrepresentations of these coordinate rings.

Formally, a geometric obstruction to the inclusion (1) for
given n and m is an irreducible representation Vi (G) of G (a
Weyl module ) that occurs as a G-subrepresentation in the
coordinate ring of Alperm,n, m] but not in the coordinate
ring of A[det,m] 3; cf. Figure 1. The partition A\ here is
called a geometric obstruction label. The existence of such
an obstruction guarantees that the inclusion as in (1) is im-
possible because otherwise the obstruction would occur as a
G-subrepresentation in the coordinate ring of A[det, m] as
well.

Thus to solve the (strong) permanent vs. determinant
conjecture, it suffices to show that:

Geometric obstruction hypothesis (GOH) (cf. [26]):
A geometric obstruction exists when m is polynomial in n.

It is conjectured in [22] that GOH, or rather its slightly
relaxed form, is equivalent to the strong permanent vs. de-
terminant conjecture. We shall discuss why GOH should
hold a bit more in Section 3.2.

2.1 a&:Formal definition of the varieties

For the interested readers, we now formally define the
varieties A[det, m] and Alperm,n,m] and the action of G
on them.

Let Y be an m x m variable matrix. Let X bean n X n
submatrix of Y, say its lower-right n X n subminor. Let z

3Strictly speaking, we have to use the duals of the coordinate
rings here.

be any entry of Y outside X. Let V be the vector space of
homogeneous polynomials of degree m in the variable entries
of Y. Thus det(Y) is an element of V. Let A[det,m] be
the set of elements in V of the form det(Y”), where Y is an
m X m matrix whose entries are complex homogeneous linear
combinations of the variable entries of Y. Then A[det,m] C
V is the closure of A[det,m] in V in the usual complex
topology of V. It can be shown to be an algebraic variety.
The variety Alperm,n, m] C V is constructed similarly using
the homogeneous polynomial z™ "perm(X) € V in place
of the determinant. It can be shown (cf. [25]) that these
varieties have the required property mentioned in (1) 4,

The action of G = GLx(C), k = m?, on these varieties
is defined as follows. First, observe that the space V is
a representation of G by a natural action which, for any
matrix ¢ € G, maps any point (homogeneous polynomial)
p(Y) € V to the point p(c™'Y). Here we think of Y as
an m?2-vector by straightening it, say, rowwise. It can be
shown that A[det, m] and Alperm, n, m] are invariant under
this action of G on V. This induces a natural action of G
on these varieties as well. Under this action, each matrix
in G acts on a variety by moving its points around and
thereby inducing an automorphism. With this action, the
coordinate ring of A[det, m], by which we mean the space of
polynomial functions on V restricted to A[det, m], becomes
a representation of G: just map a polynomial function f(v)
to f(o~! - v) for any 0 € G and v € A[det,m]. Here 6" - v
denotes the point in A[det, m] obtained by letting o~ € G
act on v. The coordinate ring of A[perm,n,m]| is similarly
a representation of G.

3. THEFLIP

With the help of GOH, we have reduced the nonexistence
problem under consideration to an existence problem. For
general varieties, such an existence problem is hopeless. But
we can hope to prove existence of a geometric obstruction
using the characterization by symmetries provided by the
properties (P) and (D). We turn to this story in this section.

The strategy is to construct, for any n and m polynomial
in n, a geometric obstruction label A explicitly in time poly-
nomial in n and m exploiting the properties (P) and (D).
We call this strategy the flip because it reduces the nonexis-
tence problem under consideration to the problem of proving
existence of a geometric obstruction, and furthermore, the
lower bound problem is reduced to the upper bound problem
of constructing a geometric obstruction label in polynomial
time.

The following is a stronger and precise explicit form of
GOH which says that geometric obstructions can indeed be
constructed explicitly.

Flip Hypothesis (FH) (cf. [22, 23]) The geometric ob-
struction family is explicit in the sense that it satisfies the
following properties:

FH[Short]: A short geometric obstruction label A, with bit
length polynomial in n and m, exists if m is polynomial in
n.

FH[Verification]: Given n,m, and a partition A, whether A
is a valid geometric obstruction label can be verified in time
polynomial in n, m and the bit length of .

FH[Discovery and construction]: Given n and m, whether a

4Actually the varieties here are the affine cones of the pro-
jective varieties defined in [25].



geometric obstruction exists can be decided in time polyno-
mial in n and m. If an obstruction exists, one such geometric
obstruction label A can also be constructed in the same time.
By FH[Short], this discovery algorithm always succeeds if m
is polynomial in n.

FH[Det]: For given m and A, whether Vi(G) occurs as a G-
subrepresentation in the coordinate ring ® of A[det, m] can
be verified in time polynomial in m and the bit length of .
FH[Perm]: For given n,m and X, whether V) (G) occurs as a
G-subrepresentation in the coordinate ring of Alperm, n,m]
can be verified in time polynomial in n, m and the bit length
of A.

The flip strategy can now be elaborated further into three
steps: (1) Prove FH[Det] and FH[Perm]. This clearly implies
an efficient criterion for verifying a geometric obstruction la-
bel as in FH[Verification]. (2) Use this criterion to design
an efficient algorithm for discovering an obstruction as in
FH[Discovery|. (3) Prove that this discovery algorithms al-
ways succeeds if m is polynomial in n. For this strategy to
succeed, it is not enough if the verification and discovery al-
gorithms are only efficient in theory. They should also have
simple enough mathematical structure to carry out the step
(3). Otherwise, they have to be made simpler and simpler
until (3) succeeds.

We shall discuss why FH should hold later in Section 3.2.
There is a huge gap between FH and what can be proved
at present. Currently the best algorithms for verification
and construction of a geometric obstruction label based on
general purpose algorithms in algebraic geometry and repre-
sentation theory take at least double exponential time in n
and m. FH says that this time bound can be brought down
to a polynomial. This may seem impossible.

3.1 Why go for explicit proofs?

If so, one may ask why we should go for explicit construc-
tion of obstructions when proving existence of obstructions
even nonconstructively suffices in principle. The reason is
provided by the strong flip theorem in [21, 23] described in
Section 3.3 below. It says that any proof of the arithmetic
(strong) permanent vs. determinant conjecture can be con-
verted into an explicit proof assuming a stronger form of
a standard derandomization hypothesis [12] in complexity
theory (described below) that is generally regarded as easier
than the target lower bound. By an explicit proof, we mean
that the proof also yields an algorithm for efficient construc-
tion of some proof certificate of hardness of the permanent,
called an obstruction, that is analogous to the geometric ob-
struction above in the following sense: (1) its very existence
for given n and m guarantees that the inclusion (1) is impos-
sible, and (2) the family of obstructions satisfies analogues of
FH[short], FH[verify], and FH[construction]; cf. Section 3.3
for a formal definition. Thus, by the strong flip theorem,
the strong permanent vs. determinant conjecture essentially
forces an explicit proof, modulo derandomization.

There are similar flip theorems (cf.[21]) for other lower
bound problems, such as the usual permanent vs. determi-
nant and the arithmetic P vs. NP problems, and a certain
average case stronger form of the boolean P vs. NP prob-
lem. These results are the main reason why we are going
towards explicit proofs, i.e. towards explicit construction of
obstructions, right from the beginning.

® Actually its dual; and similarly in FH[Perm].

The derandomization hypothesis mentioned above is the
following. It importance is based on the fundamental result
in [12] that derandomization means proving circuit lower
bounds. Let Y (X) be an m x m matrix, whose each entry
is a complex linear combination (possibly nonhomogeneous)
of the variable entries of X. The problem is to decide if
det(Y (X)), for given Y (X), is an identically zero polyno-
mial in the variable entries of X. There is a simple and effi-
cient randomized algorithm for this test. Let A be a matrix
obtained from X by substituting for each entry of X a large
enough random integer of bit length polynomial in n and m.
Evaluate det(Y (A4)) modulo a large enough random integer
b. If it is nonzero then det(Y (X)) is certainly a nonzero
polynomial. If it is zero, then det(Y (X)) is an identically
zero polynomial with a high probability. This randomized
test is a black-box test in the sense that it only needs to
know the value of det(Y (X)) for a given specialization of X
to A. It does not need to know Y (X). The derandomization
hypothesis mentioned above is essentially that this random-
ized black-box determinant identity test can be efficiently
derandomized so as to get an efficient deterministic black
box determinant identity testing algorithm. (The required
hypothesis is actually a bit stronger; cf. [21].) This deran-
domization hypothesis, which is somewhat different from the
one in [12], is essentially equivalent to proving a determinan-
tal lower bound for a multilinear function that can be evalu-
ated in exponential time; cf. [1]. This is generally regarded
as easier than proving a determinantal lower bound for the
permanent since # P is conjecturally smaller than EX P, the
class of functions that can be computed in exponential time.

3.2 Why should GOH and FH hold?

The strong flip theorem [21, 23] described in Section 3.3
below actually shows something much more. It shows that
stronger forms of the permanent vs. determinant and deran-
domization conjectures together imply an analogue of FH in
algebraic geometry of comparable difficulty. This reveals
that formidable upper bound problems in algebraic geome-
try are hidden underneath the fundamental hardness and de-
randomization conjectures in complexity theory. This may
explain why these conjectures, which look so elementary at
the surface, have turned out to be so formidable. In view
of the strong flip theorem, problems of comparable difficulty
can be expected in any approach, even if the approach does
not go via algebraic geometry. We refer to this as the “law
of conservation of difficulty”.

The article [22] gives an evidence based on the strong flip
theorem and additional results in algebraic geometry which
suggests that FH itself may be in essence an implication of
the strong permanent vs. determinant and derandomization
conjectures together. At present this is the main evidence
for FH, and hence, GOH. Further evidence is provided by
a recent article [7] which constructs explicit geometric ob-
structions in the analogous setting for the lower bound prob-
lem for matrix multiplication, albeit for a problem of very
modest size. Explicit computation for any larger example is
difficult at present due to the difficulty of the problems that
arise.

The strong flip theorem for the permanent vs. determi-
nant conjecture and analogous results in [21] for other fun-
damental hardness conjectures in complexity theory, such
as the arithmetic P vs. NP conjectures, show a funda-
mental difference between such hardness conjectures that



are at least as hard as the derandomization conjectures and
the known lower bound results in the restricted models of
computation such as constant depth [5] or monotone [27]
circuits. The lower bounds in these restricted models are
statements about the weakness of these models. In contrast,
by the strong flip theorem, the permanent vs. determinant
problem is a statement about the strength of the complex-
ity class NC' (or rather its arithmetic analogue [29] V P) for
which the determinant is essentially complete. It does not
say that NC (or rather V P) is small and weak, but rather
that it is big and strong—strong enough to assert that “I am
different from # P” (or rather its arithmetic analogue VN P
[29]), for the permanent is complete. Similarly, by an anal-
ogous flip theorem for the (arithmetic) P vs. NP problem,
this problem is a statement about the strength of the com-
plexity class P. It does not say that P is weak and small
but rather that it is big and strong—strong enough to assert
that “I am different from NP”.

It should also be remarked that FH will almost never hold
for functions not characterized by their symmetries (in place
of the determinant and the permanent), since, as we shall in
Section 3.3 below, the characterization by symmetries plays
a crucial role in the proof of the strong flip theorem that
forms the crux of the justification of FH. This is why the
characterization by symmetries is so crucial for the flip strat-
egy. It is indeed a fortunate coincidence that the fundamen-
tal complexity classes such as #P and NC have complete
functions characterized by their symmetries.

3.3 &: The strong flip theorem

To the state the strong flip theorem, we need a few defi-
nitions. Let Al[det,m], A[perm,n, m], and V be as in Sec-
tion 2.1.

By a global obstruction set for given n and small m poly-
nomial in n, we mean a set Sp m = {X1,...,X;} of nonnega-
tive integral n X n matrices with the following property. Fix
any point (homogeneous polynomial) p(Y') € A[det,m] C V.
Let p’(X) denote the polynomial obtained from p(Y") by sub-
stituting zero for all variables in Y other than z and X, and
1 for z. Then, for any such p(Y) € Aldet, m], there exists
a counterexample X; € S, ., such that p'(X;) # perm(X;).
Thus Sp,m contains a counterexample against every point in
Aldet, m] that shows that the point does not specialize to
perm(X). This guarantees that the inclusion as in (1) is not
possible for given n and m. We say that Sy, is small if [ is
polynomial in n.

We call a proof of the strong permanent vs. determinant
conjecture extremely explicit if, for each n and small m poly-
nomial in n, it shows existence of a set of bit strings called
obstructions, which serve as proof certificates of hardness of
perm(X ), with the following properties EO-E3.

EO [Short]: For every n and small m polynomial in n, there
exists a short obstruction of bitlength polynomial in n.

El [Easy to decode:] Given any such short obstruc-
tion s for given n and small m polynomial in n, one can
construct in time polynomial in n a small global obstruction
set Sp,m(s). Thus each short obstruction s denotes a small
global obstruction set.

E2 [Easy to verify]: Given a bit string s and n and m,
whether s is the specification of an obstruction for n and
m can be decided in time polynomial in n and m, and the
bitlength of s.

E3 [Easy to construct]: For each n and small m poly-

nomial in n, a valid obstruction can be constructed in time
polynomial in n.

There are some additional technical properties that an
extremely explicit proof has to satisfy; cf. [23, 21] for its
details. The properties EO, E2 and E3 are analogues of the
properties FH[Short], FH|[Verification], and FH[Construction]
of geometric obstruction labels (which we identify with geo-
metric obstructions). The geometric obstruction labels also
conjecturally satisfy the analogue of E1 for decoding (though
this was not stated in the statement of FH above).

We call a proof extremely explicit in a stronger NC'-sense,
if the various algorithms in the conditions E1-E3 work in
polylogarithmic time using polynomial number of processors
instead of sequential polynomial time.

We say that a technique for proving the strong permanent
vs. determinant conjecture is a flip if it leads to an extremely
explicit proof of the conjecture. It is called a flip because it
reduces the nonexistence problem to the problem of proving
existence of obstructions and the lower bound problem to
the upper bound problem of finding efficient algorithms to
verify, construct and decode obstructions.

For similar definitions of explicit proofs for other lower
bound problems, such as the usual permanent vs. determi-
nant and P vs. NP problems, see [23, 21].

The strong flip theorem [23, 21]

Suppose the strong permanent vs. determinant conjecture
holds, and that black box determinant identity testing [12]
described in Section 3.1 can be derandomized (in a stronger
form as specified in [21]). Then the strong permanent vs. de-
terminant conjecture has an extremely explicit proof in the
stronger NC-sense. In particular, for any m polynomial in
n, an explicit global obstruction set Sy, can be constructed
in time polynomial in n, and more strongly, in polylogarith-
mic time (in n) using polynomial number of processors.

The proof of the strong flip theorem depends critically on
the characterization by symmetries of the permanent as per
the property (P). Alternatively, one can also use downward
self-reducibility of the permanent that has several other ap-
plications in complexity theory [3].

Currently the best algorithms for the construction of a
global obstruction set Sy, m based on general purpose algo-
rithms in algebraic geometry take at least double exponen-
tial time in n and m and the bit length of the constructed
obstruction set is also double exponential in general. Bring-
ing this time down to polynomial may seem impossible at
the surface. This situation is very similar to that for FH (cf.
the remarks after the statement of FH). Thus the difficulty
of proving EO, E0, E2 and E3 for global obstruction sets
is comparable to the difficulty of proving FH for geometric
obstructions. The strong flip theorem says that the time
bound can indeed be brought down to polynomial for geo-
metric obstruction sets assuming the strong permanent vs.
determinant conjecture and the derandomization hypothe-
sis.

3.4 &: Self-referential difficulty

The strong flip theorem above also reveals the self-referential
difficulty in the permanent vs. determinant conjecture.

To see this, let us examine closely the properties E1-E3 of
an explicit proof (cf. Section 3.3) that any proof of this con-
jecture can be converted into, modulo derandomization, by
the strong flip theorem. Let Sy, 1 (s) be a global obstruction
set denoted by an obstruction string s. To verify if Sy, m(s)



indeed contains a counterexample against a given point (ho-
mogeneous polynomial) p(Y) € A[det, m], we have to check
if p'(X) # perm(X)) for some X € Sp m(s). Assuming that
the permanent is hard to compute, we cannot check effi-
ciently if p’'(X) # perm(X)) for general X. Yet, by E2 (in
the stronger NC-sense), whether Sy, (s) contains a coun-
terexample against every p(Y) € Ay [g,m] can be checked
efficiently (even in parallel). This seems to contradict the
very hardness of the permanent that we are trying to prove.

This self-referential paradox is only an apparent paradox
because assuming the permanent vs. determinant conjec-
ture and an additional derandomization hypothesis we can
construct an extremely explicit proof by the strong flip the-
orem. But this is a circular argument. The main difficulty
is to make headway in the construction of an explicit proof
without making an assumption in any guise that is as hard
as or harder than the target lower bound assumption.

Analogous flip theorems in [21] reveal similar self-referential
difficulty in other variants of the P vs. NP problem harder
than derandomization, such as the arithmetic P vs. NP
problem [25]. Intuitively, the apparent self-referential para-
dox arises because the P vs. NP conjecture, being a univer-
sal statement about mathematics which says that discovery
is hard, can potentially make the discovery of its own proof
hard.

The situation here is akin to (but far harder than) the
situation for another universal statement about mathemat-
ics, Godel’s Incompleteness Theorem. This result says that
there are true statements which cannot be proved. This does
not say that this universal statement itself cannot be proved.
As we know now, it can be proved. But the crux of this
proof is the resolution of this apparent self-referential para-
dox by the construction of a statement that says “I cannot be
proved”. Similarly, the root difficulty in the P vs. NP (and
the permanent vs. determinant) problem is the resolution
of the apparent self-referential paradox in the construction
of the statement that says “I am different from NP (#P)”.

In view of this self-referential paradox, the main concep-
tual difficulty in proving the permanent vs. determinant
conjecture is to break the circle of self-reference by decom-
posing the conjecture into subproblems without the self-
referential difficulty.

3.5 &: The decomposition

We now describe how this is achieved in GCT.

Towards this end, observe that FH[Det] does not have
the self-referential difficulty in the sense that (1) m is not
required to be a small function of n in its statement, and
(2) it only depends on the properties of the determinant,
and not on the relationship between the permanent and the
determinant (or equivalently, between the complexity classes
#P and NC). The case of FH[Perm)] is similar.

FH[Det] and FH[Perm] together imply FH]verification],
which says that geometric obstructions in GOH are easy to
verify. We saw in Section 3.4 that the self-referential diffi-
culty is the main obstacle to efficient verification of obstruc-
tions as needed in E2. Hence, once FH[Det] and FH[Perm)|
are proved, GOH does not have the self-referential difficulty
in verification any more. This decomposes the strong per-
manent vs. determinant conjecture into three subproblems
without the self-referential difficulty in verification, namely,
FH[Det], FH[Perm], and GOH. Pictorially:

Strong perm. vs. det. <= 3)
FH[Det] + FH[Perm] + GOH.

Here the solid arrow «— denotes the formal implication—
this follows trivially since GOH itself implies the strong per-
manent vs. determinant conjecture. The dotted arrow --- >
indicates the evidence given in [22] for the plausible converse
based on the strong flip theorem (cf. Section 3.3). This
decomposition breaks the circle of self-reference for verifica-
tion. Intuitively, the circle is broken here because the task
of verifying a geometric obstruction naturally breaks into
two independent tasks, one depending only on the perma-
nent (i.e. the complexity class #P) and the other only on
the determinant (i.e. the complexity class NC). This is the
fundamental difference between geometric obstructions and
the global obstruction sets in the strong flip theorem.

The article [22] also describes an approach to prove FH
assuming certain positivity hypotheses in algebraic geometry
and representation theory. The first positivity hypothesis
called PH1 basically says that, for given n,m and A, the
number of copies of the Weyl module V) (G) that occur in the
coordinate ring ¢ of A[det, m] (and similarly A[perm, n, m])
has a positive (#P) formula without alternating signs, akin
to the usual positive formula for the permanent. We do not
discuss other positivity hypotheses here. These hypotheses
are again supported by the strong flip theorem, which sug-
gests (cf. [22]) that these hypotheses too (like FH) may be
in essence implications of the strong permanent vs. deter-
minant and derandomization conjectures together. Further-
more, the self-referential difficulty is absent in these posi-
tivity hypotheses for the same reason that it is absent in
FH[Det] and FH[Perm]. The decomposition theorem in [22,
23] decomposes the strong permanent vs. determinant con-
jecture in terms of these positivity hypotheses and a more
refined form of GOH (called OH), which too is without the
self-referential difficulty once the positivity hypotheses are
proved. Unlike (3), this decomposition yields an approach to
prove FH[Discovery] also in addition FH[Verification]. See
[22, 23] for its details.

The positivity hypotheses above turn out to be formidable
because as explained in [22] they encompass and go much
further than the century-old plethysm problem in algebraic
geometry and representation theory. Since in view of the
strong flip theorem these may be essentially implications of
the strong hardness and derandomization conjectures, prob-
lems of comparable difficulty can be expected in any ap-
proach. In this sense positivity (like explicit construction)
is a hidden root difficulty underneath the fundamental hard-
ness conjectures of complexity theory. This provides yet an-
other reason (in addition to the strong flip theorem) for why
these conjectures have turned out to be so hard though they
look so elementary at the surface.

The articles [4, 22, 19, 20] suggest an approach to the
positivity hypotheses via nonstandard quantum groups. But
this story is beyond the scope of this article.

See [22] for the GCT approach to derandomization of de-
terminant and polynomial identity testing [12] and the arith-
metic P vs. NP problem.

4. FREQUENTLY ASKED QUESTIONS

5Strictly speaking, its dual.



Now we address frequently asked questions regarding GCT.

4.1 Can GCT be used to prove some modest

lower bounds first?

Given the difficulty of the fundamental hardness conjec-
tures, one may ask if GCT can be used to prove some mod-
est lower bounds first. That is indeed so. Currently the
best known lower bounds in the context of the P vs. NC
and strong permanent vs. determinant problems are both
based on GCT. The first lower bound is a special case of
the P # NC conjecture proved in [18]. It says that the
P-complete max-flow problem cannot be solved in polylog-
arithmic time using polynomially many processors in the
PRAM model without bit operations. This model is quite re-
alistic and natural in contrast to the the constant depth [5] or
monotone [27] circuit models used for proving lower bounds
earlier. This lower bound is currently the only known super-
polynomial lower bound that is a nontrivial implication of
a fundamental separation conjecture like the P # NC' con-
jecture and holds unconditionally in a natural and realistic
model of computation. Its proof is geometric and quasi-
explicit. No combinatorial or elementary proof is known so
far. This result was the beginning of the GCT approach
to the fundamental hardness conjectures. The second lower
bound based on GCT constructions, specifically the varieties
Aldet, m] and Alperm,n,m], is the quadratic lower bound
[14] stated in Section 2 in the context of the strong perma-
nent vs. determinant conjecture. It is a stronger form of the
earlier quadratic lower bound [16] for the usual permanent
vs. determinant problem. The proof in [16] is elementary
and does not need GCT. The difference between the strong
and usual versions of the permanent vs. determinant prob-
lem in [14] and [16] is akin to the difference between the
tensor rank and usual versions of the lower bound problem
for matrix multiplication [6].

See also the lower bounds for matrix multiplication based
on the fundamental work [28] that introduced invariant the-
ory in complexity theory.

4.2 Are explicit proofs necessary?

By the strong flip theorem (cf. Sections 3.1 and 3.3), we
know that any proof of the strong permanent vs. determi-
nant conjecture leads to an explicit proof modulo derandom-
ization. This does not say that explicit proofs are necessary.
There may be nonexplicit proofs that avoid derandomization
all together. But this does suggest that, if derandomiza-
tion is indeed easier than the fundamental hardness conjec-
tures (cf. [12]) as the complexity theory suggests, then even
such nonexplicit proofs would essentially have the necessary
mathematical ingradients to construct proof-certificates of
hardness efficiently a posteriori. If so, it makes sense to go
towards this efficient construction right from the beginning.
This allows us to use the theory of algorithms—the main tool
of complexity theory—in the study of the fundamental lower
bounds. Indeed, it is unrealistic to expect that we can prove
P # NP without understanding the complexity class P and
the theory of algorithms in depth first, as the flip strategy
suggests.

The situation here may be compared to that for the well
known four colour theorem [2]. In principle, this theorem
may be proved nonconstructively. Yet the fact remains that
all known proofs of this theorem are explicit in the sense
that they also yield efficient algorithms for finding a four

colouring as a byproduct. The flip theorem suggests that the
story of the fundamental hardness conjectures in complexity
theory may be similar.

In this sense these conjectures are fundamentally different
from other conjectures in mathematics such as the Riemann
Hypothesis. Since there is no analogous flip theorem for the
Riemann Hypothesis, it may have a nonconstructive proof
that gives no hint on how to test efficiently if the n-th zero
of the Riemann zeta function lies on the critical line.

4.3 Is algebraic geometry necessary?

By [29], the arithmetic permanent vs. determinant con-
jecture over Z is implied by the #P vs. NC conjecture. By
the strong flip theorem [21, 23] (cf. Section 3.3), stronger
forms of the fundamental hardness and derandomization hy-
potheses in the arithmetic setting imply an analogue of FH
in algebraic geometry of comparable difficulty. We have al-
ready argued on the basis of these results in Section 1 why
it is not pragmatic to avoid algebraic geometry, even though
is not formally necessary.

Another concrete evidence for the power of algebraic ge-
ometry even in the boolean setting is provided by the proof
of the special case of the P # NC' conjecture [18] (cf. Sec-
tion 4.1). It has to be emphasized here that, unlike the ear-
lier lower bounds in the algebraic model [6], this lower bound
is boolean, not algebraic. This is because it is in terms of the
bit length of the input, though the PRAM model in [18] does
not allow bit operations. At present, to our knowledge, this
is the only nontrivial implication of a fundamental hardness
conjecture that can be proved unconditionally in a natural
and realistic model of computation. If we cannot prove even
this easier implication of the P # NC conjecture by ele-
mentary techniques, it seems unrealistic to expect that we
can prove the far harder P # NC (or NP) conjecture by
elementary techniques.

4.4 When can we expect a hard lower bound?

The modest lower bounds based on GCT (Section 4.1) and
the earlier modest lower bounds [3, 6] are separated from
the fundamental hardness conjectures that are at least as
hard as derandomization by the circle of self-referential dif-
ficulty (Section 3.4); cf. Figure 3. To break into this circle,
we have to show (cf. Sections 3.2 and 3.3) that P contains
formidable explicit construction problems in algebraic geom-
etry and representation theory, such as the ones that arise in
the strong flip theorem or FH. By the law of conservation of
difficulty (cf. Section 3.2) based on the strong flip theorem,
comparable understanding of P is needed in any approach.
Unfortunately, our current understanding of P is very mod-
est. Until we understand P (the theory of algorithms) and
geometry in the required depth, we may not expect any fur-
ther lower bounds that are fundamentally different from the
modest lower bounds in Section 4.1.

5. CONCLUSION

GCT has broken the circle of self-reference around the fun-
damental hardness conjectures in the arithmetic setting and
in the process has revealed deep explicit construction and
positivity problems at the crossroads of algebraic geometry,
representation theory, and complexity theory hidden under-
neath the fundamental hardness conjectures in complexity
theory. Given the formidable nature of these problems, this
is undoubtedly only the beginning.
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